Kähler-sasaki Geometry of Toric Symplectic Cones in Action-angle Coordinates

نویسنده

  • MIGUEL ABREU
چکیده

In the same way that a contact manifold determines and is determined by a symplectic cone, a Sasaki manifold determines and is determined by a suitable Kähler cone. KählerSasaki geometry is the geometry of these cones. This paper presents a symplectic action-angle coordinates approach to toric Kähler geometry and how it was recently generalized, by Burns-Guillemin-Lerman and Martelli-Sparks-Yau, to toric Kähler-Sasaki geometry. It also describes, as an application, how this approach can be used to relate a recent new family of Sasaki-Einstein metrics constructed by Gauntlett-MartelliSparks-Waldram in 2004, to an old family of extremal Kähler metrics constructed by Calabi in 1982.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Kähler Geometry of Toric Manifolds in Symplectic Coordinates

A theorem of Delzant states that any symplectic manifold (M,ω) of dimension 2n, equipped with an effective Hamiltonian action of the standard n-torus Tn = Rn/2πZn, is a smooth projective toric variety completely determined (as a Hamiltonian Tn-space) by the image of the moment map φ : M → Rn, a convex polytope P = φ(M) ⊂ Rn. In this paper we show, using symplectic (action-angle) coordinates on ...

متن کامل

Transverse Kähler Geometry of Sasaki Manifolds and Toric Sasaki-einstein Manifolds

In this paper we study compact Sasaki manifolds in view of transverse Kähler geometry and extend some results in Kähler geometry to Sasaki manifolds. In particular we define integral invariants which obstruct the existence of transverse Kähler metric with harmonic Chern forms. The integral invariant f1 for the first Chern class case becomes an obstruction to the existence of transverse Kähler m...

متن کامل

Non-Kähler symplectic manifolds with toric symmetries

Drawing on the classification of symplectic manifolds with cosiotropic principal orbits by Duistermaat and Pelayo, in this note we exhibit families of compact symplectic manifolds, such that (i) no two manifolds in a family are homotopically equivalent, (ii) each manifold in each family possesses Hamiltonian, and non-Hamiltonian, toric symmetries, (iii) each manifold has odd first Betti number ...

متن کامل

Symplectic Toric Manifolds

Foreword These notes cover a short course on symplectic toric manifolds, delivered in six lectures at the summer school on Symplectic Geometry of Integrable Hamiltonian Systems, mostly for graduate students, held at the Centre de Recerca Matemàtica in Barcelona in July of 2001. The goal of this course is to provide a fast elementary introduction to toric manifolds (i.e., smooth toric varieties)...

متن کامل

Numerical Kähler-Einstein metric on the third del Pezzo

The third del Pezzo surface admits a unique Kähler-Einstein metric, which is not known in closed form. The manifold’s toric structure reduces the Einstein equation to a single Monge-Ampère equation in two real dimensions. We numerically solve this nonlinear PDE using three different algorithms, and describe the resulting metric. The first two algorithms involve simulation of Ricci flow, in comp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009